A note on linear homogeneous diophantine equations
نویسندگان
چکیده
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملSolving Linear Diophantine Equations
An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.
متن کاملDiophantine equations related to quasicrystals: a note
We give the general solution of three Diophantine equations in the ring of integer of the algebraic number field Q[ √ 5]. These equations are related to the problem of determination of the minimum distance in quasicrystals with fivefold symmetry.
متن کاملOn Systems of Linear Diophantine Equations
Introduction Something happened to me recently I would wager has happened to many who read this note. Teaching a new topic, you cannot understand one of the proofs. Your first attempt to fill the gap fails. You look through your books for an answer. Next, you ask colleagues, go to the library, maybe even use the interlibrary loan. All in vain. Then it strikes you that, in fact, you cannot answe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1946
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1946-08645-0